Remotely operated underwater vehicle

A tethered underwater mobile device operated by a remote crew
ROV at work in an underwater oil and gas field. The ROV is using a torque wrench to adjust a valve on a subsea structure.

A remotely operated underwater vehicle (technically ROUV or just ROV) is a tethered underwater mobile device, commonly called underwater robot.


This meaning is different from remote control vehicles operating on land or in the air. ROVs are unoccupied, usually highly maneuverable, and operated by a crew either aboard a vessel/floating platform or on proximate land. They are common in deepwater industries such as offshore hydrocarbon extraction. They are linked to a host ship by a neutrally buoyant tether or, often when working in rough conditions or in deeper water, a load-carrying umbilical cable is used along with a tether management system (TMS). The TMS is either a garage-like device which contains the ROV during lowering through the splash zone or, on larger work-class ROVs, a separate assembly which sits on top of the ROV. The purpose of the TMS is to lengthen and shorten the tether so the effect of cable drag where there are underwater currents is minimized. The umbilical cable is an armored cable that contains a group of electrical conductors and fiber optics that carry electric power, video, and data signals between the operator and the TMS. Where used, the TMS then relays the signals and power for the ROV down the tether cable. Once at the ROV, the electric power is distributed between the components of the ROV. However, in high-power applications, most of the electric power drives a high-power electric motor which drives a hydraulic pump. The pump is then used for propulsion and to power equipment such as torque tools and manipulator arms where electric motors would be too difficult to implement subsea. Most ROVs are equipped with at least a video camera and lights. Additional equipment is commonly added to expand the vehicle's capabilities. These may include sonars, magnetometers, a still camera, a manipulator or cutting arm, water samplers, and instruments that measure water clarity, water temperature, water density, sound velocity, light penetration, and temperature.[1]


A Royal Navy ROV (Cutlet) first used in the 1950s to retrieve practice torpedoes and mines

In the 1970s and '80s the Royal Navy used "Cutlet", a remotely operated submersible, to recover practice torpedoes and mines. RCA (Noise) maintained the "Cutlet 02" System based at BUTEC ranges, whilst the "03" system was based at the submarine base on the Clyde and was operated and maintained by RN personnel.

The U.S. Navy funded most of the early ROV technology development in the 1960s into what was then named a "Cable-Controlled Underwater Recovery Vehicle" (CURV). This created the capability to perform deep-sea rescue operation and recover objects from the ocean floor, such as a nuclear bomb lost in the Mediterranean Sea after the 1966 Palomares B-52 crash. Building on this technology base; the offshore oil & gas industry created the work-class ROVs to assist in the development of offshore oil fields. More than a decade after they were first introduced, ROVs became essential in the 1980s when much of the new offshore development exceeded the reach of human divers. During the mid-1980s the marine ROV industry suffered from serious stagnation in technological development caused in part by a drop in the price of oil and a global economic recession. Since then, technological development in the ROV industry has accelerated and today ROVs perform numerous tasks in many fields. Their tasks range from simple inspection of subsea structures, pipelines, and platforms, to connecting pipelines and placing underwater manifolds. They are used extensively both in the initial construction of a sub-sea development and the subsequent repair and maintenance.[2]

Submersible ROVs have been used to locate many historic shipwrecks, including the RMS Titanic, the Bismarck, USS Yorktown, and SS Central America. In some cases, such as the Titanic and the SS Central America, ROVs have been used to recover material from the sea floor and bring it to the surface.[3]

While the oil and gas industry uses the majority of ROVs, other applications include science, military, and salvage. The military uses ROV for tasks such as mine clearing and inspection. Science usage is discussed below.


In the professional diving and marine contracting industry, the usual term is ROV, for remotely operated vehicle. The more precise term, remotely operated underwater vehicle or ROUV, is less often used as the distinction is generally not necessary in this field, where the primary type of remotely operated vehicle is used underwater.[4][5][6]


Work-class ROVs are built with a large flotation pack on top of an aluminium chassis to provide the necessary buoyancy to perform a variety of tasks. The sophistication of construction of the aluminum frame varies depending on the manufacturer's design. Syntactic foam is often used for the flotation material. A tooling skid may be fitted at the bottom of the system to accommodate a variety of sensors or tooling packages. By placing the light components on the top and the heavy components on the bottom, the overall system has a large separation between the center of buoyancy and the center of gravity: this provides stability and the stiffness to do work underwater. Thrusters are placed between center of buoyancy and center of gravity to maintain the attitude stability of the robot in maneuvers. Various thruster configurations and control algorithms can be used to give appropriate positional and attitude control during the operations, particularly in high current waters. Thrusters are usually in a balanced vector configuration to provide the most precise control possible.

Electrical components can be in oil-filled water tight compartments or one-atmosphere compartments to protect them from corrosion in seawater and being crushed by the extreme pressure exerted on the ROV while working deep. The ROV will be fitted with cameras, lights and manipulators to perform basic work. Additional sensors and tools can be fitted as needed for specific tasks. It is common to find ROVs with two robotic arms; each manipulator may have a different gripping jaw. The cameras may also be guarded for protection against collisions. An ROV may be equipped with Sonar and LiDAR equipment.[7]

The majority of the work-class ROVs are built as described above; however, this is not the only style in ROV building method. Smaller ROVs can have very different designs, each appropriate to its intended task. Larger ROVs are commonly deployed and operated from vessels, so the ROV may have landing skids for retrieval to the deck.


Remotely operated vehicles have three basic configurations. Each of these brings specific limitations.

  • Open or Box Frame ROVs - this is the most familiar of the ROV configurations - consisting of an open frame where all the operational sensors, thrusters, and mechanical components are enclosed. These are useful for free-swimming in light currents (less than 4 knots based upon manufacturer specifications). These are not suitable for towed applications due to their very poor hydrodynamic design. Most Work-Class and Heavy Work-Class ROVs are based upon this configuration.[8]
  • Torpedo Shaped ROVs - this is a common configuration for data gathering or inspection class ROVs. The torpedo shape offers low hydrodynamic resistance, but comes with significant control limitations. The torpedo shape requires high speed (which is why this shape is used for military munitions) to remain positionally and attitudinally stable, but this type is highly vulnerable at high speed. At slow speeds (0-4 knots) suffers from numerous instabilities, such as tether induced roll and pitch, current induced roll, pitch, and yaw. It has limited control surfaces at the tail or stern, which easily cause over compensation instabilities. These are frequently referred to as "Tow Fish", since they are more often used as a towed ROV.[8]

Survey use

Survey or Inspection ROVs are generally smaller than workclass ROVs and are often sub-classified as either Class I: Observation Only or Class II Observation with payload.[9] They are used to assist with hydrographic survey, i.e. the location and positioning of subsea structures, and also for inspection work for example pipeline surveys, jacket inspections and marine hull inspection of vessels. Survey ROVs (also known as "eyeballs"), although smaller than workclass, often have comparable performance with regard to the ability to hold position in currents, and often carry similar tools and equipment - lighting, cameras, sonar, USBL (Ultra-short baseline) beacon, Raman spectrometer,[10] and strobe flasher depending on the payload capability of the vehicle and the needs of the user.

Use in support of diving operations

ROV operations in conjunction with simultaneous diving operations are under the overall supervision of the diving supervisor for safety reasons.[4]

The International Marine Contractors Association (IMCA) published guidelines for the offshore operation of ROVs in combined operations with divers in the document Remotely Operated Vehicle Intervention During Diving Operations (IMCA D 054, IMCA R 020), intended for use by both contractors and clients.[11]

Military use

ROVs have been used by several navies for decades, primarily for minehunting and minebreaking.

AN/SLQ-48 Mine Neutralization Vehicle

In October 2008 the U.S. Navy began to improve its locally-piloted rescue systems, based on the Mystic DSRV and support craft, with a modular system, the SRDRS, based on a tethered, manned ROV called a pressurized rescue module (PRM). This followed years of tests and exercises with submarines from the fleets of several nations.[12] It also uses the unmanned Sibitzky ROV for disabled submarine surveying and preparation of the submarine for the PRM.

The US Navy also uses an ROV called AN/SLQ-48 Mine Neutralization Vehicle (MNV) for mine warfare. It can go 1,000 yards (910 m) away from the ship due to a connecting cable, and can reach 2,000 feet (610 m) deep. The mission packages available for the MNV are known as MP1, MP2, and MP3.[13]

  • The MP1 is a cable cutter to surface the moored mine for recovery exploitation or Explosive Ordnance Disposal (EOD).
  • The MP2 is a bomblet of 75 lb (34 kg) polymer-bonded explosive PBXN-103 high explosive for neutralizing bottom/ground mines.
  • The MP3 is a moored mine cable gripper and a float with the MP2 bomblet combination to neutralize moored mines underwater.

The charges are detonated by acoustic signal from the ship.

The AN/BLQ-11 autonomous Unmanned Undersea Vehicle (UUV) is designed for covert mine countermeasure capability and can be launched from certain submarines.[14]

The U.S.Navy's ROVs are only on Avenger-class mine countermeasures ships. After the grounding of USS Guardian (MCM-5) and decommissioning of USS Avenger (MCM-1), and USS Defender (MCM-2), only 11 US Minesweepers remain operating in the coastal waters of Bahrain (USS Sentry (MCM-3), USS Devastator (MCM-6), USS Gladiator (MCM-11) and USS Dextrous (MCM-13)), Japan (USS Patriot (MCM-7), USS Pioneer (MCM-9), USS Warrior (MCM-10) and USS Chief (MCM-14)), and California (USS Champion (MCM-4), USS Scout (MCM-8), and USS Ardent (MCM-12) ).[15]

During August 19, 2011, a Boeing-made robotic submarine dubbed Echo Ranger was being tested for possible use by the U.S. military to stalk enemy waters, patrol local harbors for national security threats and scour ocean floors to detect environmental hazards.[16] The Norwegian Navy inspected the ship Helge Ingstad by the Norwegian Blueye Pioneer underwater drone.[17]

As their abilities grow, smaller ROVs are also increasingly being adopted by navies, coast guards, and port authorities around the globe, including the U.S. Coast Guard and U.S. Navy, Royal Netherlands Navy, the Norwegian Navy, the Royal Navy and the Saudi Border Guard. They have also been widely adopted by police departments and search and recovery teams. Useful for a variety of underwater inspection tasks such as explosive ordnance disposal (EOD), meteorology, port security, mine countermeasures (MCM), and maritime intelligence, surveillance, reconnaissance (ISR).[18]

Science use

Image taken by a ROV of krill feeding on ice algae in Antarctica.
A science ROV being retrieved by an oceanographic research vessel.
A ROV's suction device about to capture a specimen of the deep sea octopus Cirroteuthis muelleri

ROVs are also used extensively by the scientific community to study the ocean. A number of deep sea animals and plants have been discovered or studied in their natural environment through the use of ROVs; examples include the jellyfish Stellamedusa ventana and the eel-like halosaurs. In the US, cutting edge work is done at several public and private oceanographic institutions, including the Monterey Bay Aquarium Research Institute (MBARI), the Woods Hole Oceanographic Institution (WHOI) (with Nereus), and the University of Rhode Island / Institute for Exploration (URI/IFE).[19][20]

Science ROVs take many shapes and sizes. Since good video footage is a core component of most deep-sea scientific research, research ROVs tend to be outfitted with high-output lighting systems and broadcast quality cameras.[21] Depending on the research being conducted, a science ROV will be equipped with various sampling devices and sensors. Many of these devices are one-of-a-kind, state-of-the-art experimental components that have been configured to work in the extreme environment of the deep ocean. Science ROVs also incorporate a good deal of technology that has been developed for the commercial ROV sector, such as hydraulic manipulators and highly accurate subsea navigation systems. They are also used for underwater archaeology projects such as the Mardi Gras Shipwreck Project in the Gulf of Mexico[22][23] and the CoMAS project [24] in the Mediterranean Sea.[25]

While there are many interesting and unique science ROVs, there are a few larger high-end systems that are worth taking a look at. MBARI's Tiburon vehicle cost over $6 million US dollars to develop and is used primarily for midwater and hydrothermal research on the West Coast of the US.[26] WHOI's Jason system has made many significant contributions to deep-sea oceanographic research and continues to work all over the globe. URI/IFE's Hercules ROV is one of the first science ROVs to fully incorporate a hydraulic propulsion system and is uniquely outfitted to survey and excavate ancient and modern shipwrecks. The Canadian Scientific Submersible Facility ROPOS system is continually used by several leading ocean sciences institutions and universities for challenging tasks such as deep-sea vents recovery and exploration to the maintenance and deployment of ocean observatories.[27]

Educational outreach

The SeaPerch Remotely Operated Underwater Vehicle (ROV) educational program is an educational tool and kit that allows elementary, middle, and high-school students to construct a simple, remotely operated underwater vehicle, from polyvinyl chloride (PVC) pipe and other readily made materials. The SeaPerch program teaches students basic skills in ship and submarine design and encourages students to explore naval architecture and marine and ocean engineering concepts. SeaPerch is sponsored by the Office of Naval Research, as part of the National Naval Responsibility for Naval Engineering (NNRNE), and the program is managed by the Society of Naval Architects and Marine Engineers.[28]

Another innovative use of ROV technology was during the Mardi Gras Shipwreck Project. The "Mardi Gras Shipwreck" sank some 200 years ago about 35 miles off the coast of Louisiana in the Gulf of Mexico in 4,000 feet (1220 meters) of water. The shipwreck, whose real identity remains a mystery, lay forgotten at the bottom of the sea until it was discovered in 2002 by an oilfield inspection crew working for the Okeanos Gas Gathering Company (OGGC). In May 2007, an expedition, led by Texas A&M University and funded by OGGC under an agreement with the Minerals Management Service (now BOEM), was launched to undertake the deepest scientific archaeological excavation ever attempted at that time to study the site on the seafloor and recover artifacts for eventual public display in the Louisiana State Museum. As part of the educational outreach Nautilus Productions in partnership with BOEM, Texas A&M University, the Florida Public Archaeology Network[29] and Veolia Environmental produced a one-hour HD documentary[30] about the project, short videos for public viewing and provided video updates during the expedition.[31] Video footage from the ROV was an integral part of this outreach and used extensively in the Mystery Mardi Gras Shipwreck documentary.[32]

The Marine Advanced Technology Education (MATE) Center uses ROVs to teach middle school, high school, community college, and university students about ocean-related careers and help them improve their science, technology, engineering, and math skills. MATE's annual student ROV competition challenges student teams from all over the world to compete with ROVs that they design and build. The competition uses realistic ROV-based missions that simulate a high-performance workplace environment, focusing on a different theme that exposes students to many different aspects of marine-related technical skills and occupations. The ROV competition is organized by MATE and the Marine Technology Society's ROV Committee and funded by organizations such as the National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and Oceaneering, and many other organizations that recognize the value of highly trained students with technology skills such as ROV designing, engineering, and piloting. MATE was established with funding from the National Science Foundation and is headquartered at Monterey Peninsula College in Monterey, California.[33]

List of Scientific ROVs

ROV Ventana in Monterrey, California (1996).
Deep Discoverer ROV, operated from NOAAS Okeanos Explorer
ROV Name Operator Years in Operation
Jason WHOI 1988–Present[34]
Nereus WHOI 2009 - 2014[35]
ISIS National Oceanography Centre 2006–Present[36]
SuBastian Schmidt Ocean Institute 2016–Present[37]
ROV Tiburon MBARI 1996 - 2008[38]
ROV Ventana MBARI 1988–Present[39][40]
ROV Doc Ricketts MBARI 2009–Present[41][42]
Luʻukai University of Hawaiʻi at Mānoa 2013–Present[43]
V8 Offshore University of Gothenburg 2011–Present[44]
ROV Hercules Nautilus Live Ocean Exploration Trust 2003–Present[45]
Ægir6000 UiB 2015–Present[46]
ROV Kiel GEOMAR 2007–Present[47]
Deep Discoverer Global Foundation for Ocean Exploration 2013–Present[48][49]
Kaikō JAMSTEC 1993 - 2003[50]
ABISMO JAMSTEC 2007–Present[51]
ROPOS Canadian Scientific Submergence Facility 1986–Present[52]
AURORA REV Ocean 2021–Present[53]
MARUM-QUEST MARUM 2003–Present[54]
MARUM-SQUID MARUM 2015–Present[55]

Broadcast use

As cameras and sensors have evolved and vehicles have become more agile and simple to pilot, ROVs have become popular particularly with documentary filmmakers due to their ability to access deep, dangerous, and confined areas unattainable by divers. There is no limit to how long an ROV can be submerged and capturing footage, which allows for previously unseen perspectives to be gained.[56] ROVs have been used in the filming of several documentaries, including Nat Geo's Shark Men and The Dark Secrets of the Lusitania and the BBC Wildlife Special Spy in the Huddle.[57]

Due to their extensive use by military, law enforcement, and coastguard services, ROVs have also featured in crime dramas such as the popular CBS series CSI.

Hobby use

With an increased interest in the ocean by many people, both young and old, and the increased availability of once expensive and non-commercially available equipment, ROVs have become a popular hobby amongst many. This hobby involves the construction of small ROVs that generally are made out of PVC piping and often can dive to depths between 50 and 100 feet but some have managed to get to 300 feet. This new interest in ROVs has led to the formation of many competitions, including MATE (Marine Advanced Technology Education) and NURC (National Underwater Robotics Challenge). These are competitions in which competitors, most commonly schools and other organizations, compete against each other in a series of tasks using ROVs that they have built.[58] Most hobby ROVs are tested in swimming pools and lakes where the water is calm, however some have tested their own personal ROVs in the sea. Doing so, however, creates many difficulties due to waves and currents that can cause the ROV to stray off course or struggle to push through the surf due to the small size of engines that are fitted to most hobby ROVs.[59]


Submersible ROVs are normally classified into categories based on their size, weight, ability or power. Some common ratings are:

  • Micro - typically Micro-class ROVs are very small in size and weight. Today's Micro-Class ROVs can weigh less than 3 kg. These ROVs are used as an alternative to a diver, specifically in places where a diver might not be able to physically enter such as a sewer, pipeline or small cavity.
  • Mini - typically Mini-Class ROVs weigh in around 15 kg. Mini-Class ROVs are also used as a diver alternative. One person may be able to transport the complete ROV system out with them on a small boat, deploy it and complete the job without outside help. Some Micro and Mini classes are referred to as "eyeball"-class to differentiate them from ROVs that may be able to perform intervention tasks.
  • General - typically less than 5 HP (propulsion); occasionally small three finger manipulators grippers have been installed, such as on the very early RCV 225. These ROVs may be able to carry a sonar unit and are usually used on light survey applications. Typically the maximum working depth is less than 1,000 metres though one has been developed to go as deep as 7,000 m.
  • Inspection Class - these are typically rugged commercial or industrial use observation and data gathering ROVs - typically equipped with live-feed video, still photography, sonar, and other data collection sensors. Inspection Class ROVs can also have manipulator arms for light work and object manipulation.
  • Light Workclass - typically less than 50 hp (propulsion). These ROVs may be able to carry some manipulators. Their chassis may be made from polymers such as polyethylene rather than the conventional stainless steel or aluminium alloys. They typically have a maximum working depth less than 2000 m.
  • Heavy Workclass - typically less than 220 hp (propulsion) with an ability to carry at least two manipulators. They have a working depth up to 3500 m.
  • Trenching & Burial - typically more than 200 hp (propulsion) and not usually greater than 500 hp (while some do exceed that) with an ability to carry a cable laying sled and work at depths up to 6000 m in some cases.

Submersible ROVs may be "free swimming" where they operate neutrally buoyant on a tether from the launch ship or platform, or they may be "garaged" where they operate from a submersible "garage" or "tophat" on a tether attached to the heavy garage that is lowered from the ship or platform. Both techniques have their pros and cons;[clarification needed] however very deep work is normally done with a garage.[60]

See also

  • Autonomous underwater vehicle – Unmanned underwater vehicle with autonomous guidance system
  • Echo Ranger – Marine autonomous underwater vehicle built by Boeing
  • Eelume – An autonomous underwater vehicle for inspection, maintenance, and repair
  • Global Explorer ROV – Deep water science and survey remotely operated vehicle
  • Helix Energy Solutions Group – Provider of offshore services and ROV operations
  • Nereus (underwater vehicle) – Hybrid remotely operated or autonomous underwater vehicle
  • PantheROV
  • Scorpio ROV – Work class remotely operated underwater vehicle
  • Subsea (technology) – Technology of submerged operations in the sea
  • Underwater acoustic positioning system – System for tracking and navigation of underwater vehicles or divers using acoustic signals
  • UNESCO Convention on the Protection of the Underwater Cultural Heritage
  • VideoRay UROVs – Series of inspection class remotely operated underwater vehicles
  • [[OpenROV|OpenROV]]
  • Robotic non-destructive testing – Method of inspection using remotely operated tools


  1. ^ "Remotely Operated Vehicle Design and Function". Maritime About. Retrieved 4 June 2016.
  2. ^ "What Are Rov's". Kmex Group. Retrieved 4 June 2016.
  3. ^ "Ships & Technology used during the Titanic Expeditions". Woods Hole Oceanographic Institution. Retrieved 4 June 2016.
  4. ^ a b Staff (February 2014). IMCA International Code of Practice for Offshore Diving. IMCA D 014 Rev. 2. London: International Marine Contractor's Association.
  5. ^ Diving Regulations 2009. Occupational Health and Safety Act 85 of 1993 – Regulations and Notices – Government Notice R41. Pretoria: Government Printer. Archived from the original on 2016-11-04. Retrieved 2019-03-16 – via Southern African Legal Information Institute.
  6. ^ "IMCA C 005: Guidance on competence assurance and assessment: Remote systems & ROV Division" (Rev. 3 ed.). International Marine Contractors Association. January 2011. Retrieved 16 March 2019.
  7. ^ "The Basic components of an ROV" (PDF). National Sun Yat-sen University. Retrieved 4 June 2016.
  8. ^ a b "Remotely Operated Vehicle Committee of the Marine Technology Society". Retrieved 2017-10-10.
  9. ^ Staff (7 August 2015). "World-Wide ROV Stats for 2014". IMCA. Retrieved 18 August 2016.
  10. ^ Teague, Jonathan; Megson-Smith, David; Verbelen, Yannick; Scott, Thomas (6 March 2022). "Underwater Spectroscopic Techniques for In-situ Nuclear Waste Characterisation". Proceedings of WM2022. Nuclear Waste Management (WM2022). Phoenix, AZ.
  11. ^ "IMCA Issues ROV Guide During Diving Ops". Offshore Energy. 2 February 2015. Retrieved 10 February 2021.
  12. ^ Tarantola, Andrew (11 October 2012). "This ROV Dives 2,000 Feet To Save Sailors on a Sunken Submarine". Gizmodo. Retrieved 4 June 2016.
  13. ^ "AN/SLQ-48 - Mine Neutralization Vehicle". FAS. Retrieved 4 June 2016.
  14. ^ "AN/BLQ-11 Autonomous Unmanned Undersea Vehicle". NavalDrones. Retrieved 4 June 2016.
  15. ^ Dan Petty. "The US Navy -- Fact File: Mine Countermeasures Ships - MCM". Retrieved 25 May 2015.
  16. ^ Hennigan, W. J. (2011-08-19). "Boeing Co. tests submarine drone off Santa Catalina Island". Los Angeles Times. Retrieved 25 May 2015.
  17. ^ Blueye Robotics (2018-12-19), The Norwegian Navy piloting the Blueye Pioneer underwater drone | Frigate Helge Ingstad, retrieved 2019-02-25
  18. ^ News, Ocean (23 Mar 2020). "Blueprint Lab and VideoRay in Partnership for New EOD Tool for US Navy". ONT. Ocean News. Retrieved 14 May 2020. {{cite news}}: |last1= has generic name (help)
  19. ^ HG Greene, DS Stakes, DL Orange, JP Barry and BH Robison. (1993). "Application of a remotely operated vehicle in geologic mapping of Monterey Bay, California, USA". In: Heine and Crane (Eds). Diving for Science...1993. Proceedings of the American Academy of Underwater Sciences (13th annual Scientific Diving Symposium). Retrieved 2008-07-11.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ C Harrold, K Light & S Lisin. (1993). "Distribution, Abundance, and Utilization of Drift Macrophytes in a Nearshore Submarine Canyon System ". In: Heine and Crane (Eds). Diving for Science...1993. Proceedings of the American Academy of Underwater Sciences (13th annual Scientific Diving Symposium). Retrieved 2008-07-11.
  21. ^ Reed JK, Koenig CC, Shepard AN, Gilmore Jr RG (2007). "Long Term Monitoring of a Deep-water Coral Reef: Effects of Bottom Trawling". In: NW Pollock, JM Godfrey (Eds.) the Diving for Science…2007. Proceedings of the American Academy of Underwater Sciences (Twenty–sixth annual Scientific Diving Symposium). Retrieved 2008-07-11.
  22. ^ "Projects, Mardi Gras". Florida Public Archaeology Network. University of West Florida. Retrieved 8 November 2017.
  23. ^ "Mardi Gras Project". Center for Maritime Archaeology & Conservation.
  24. ^ Bruno, F.; et al. (2016). "The CoMAS project: new materials and tools for improving the in-situ documentation, restoration and conservation of underwater archaeological remains". Marine Technology Society Journal. 50 (4): 108–118. doi:10.4031/MTSJ.50.4.2.
  25. ^ A ROV for supporting the planned maintenance in underwater archaeological sites. MTS/IEEE OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy for a New World. doi:10.1109/OCEANS-Genova.2015.7271602.
  26. ^ TM Shank, DJ Fornari, M Edwards, R Haymon, M Lilley, K Von Damm, and RA Lutz. (1994). "Rapid Development of Biological Community Structure and Associated Geological Features at Hydrothermal Vents at 9-10 North, East Pacific Rise". In: M DeLuca (Ed). Diving for Science...1994. Proceedings of the American Academy of Underwater Sciences (14th annual Scientific Diving Symposium). Retrieved 2008-07-11.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^ "ROPOS - Canadian Scientific Submersible Facility". Ropos. Retrieved 4 June 2016.
  28. ^ " :: The official site of SeaPerch". Retrieved 25 May 2015.
  29. ^ "FPAN Home". Florida Public Archaeology.
  30. ^ "Mystery Mardi Gras Shipwreck". Nautilus Productions.
  31. ^ Faulk, Kimberly L; Allen, Rick (September 2017). "Lights, Camera ... Shipwreck!?! Multimedia at Four Thousand Feet". Historical Archaeology. 51 (3): 418–424. doi:10.1007/s41636-017-0051-1. S2CID 164446605.
  32. ^ Opdyke, Mark (2007). "Mystery Mardi Gras Shipwreck Documentary". The Museum of Underwater Archaeology.
  33. ^ "MATE - Marine Advanced Technology Education :: Home". Retrieved 25 May 2015.
  34. ^ "ROV Jason/Medea - Woods Hole Oceanographic Institution".
  35. ^ "Robotic Deep-sea Vehicle Lost on Dive to 6-Mile Depth".
  36. ^ "Deep Platforms | National Oceanography Centre". Retrieved 2021-11-10.
  37. ^ "4500 m Remotely Operated Vehicle (ROV SuBastian)". Schmidt Ocean Institute.
  38. ^ "Vessels and Vehicles - ROV Tiburon".
  39. ^ "16,000 hours beneath the sea (and counting)". MBARI. 10 March 2017.
  40. ^ "ROV Ventana". MBARI. 24 November 2015.
  41. ^ "ROV Doc Ricketts Specifications". MBARI. 30 December 2015.
  42. ^ "Deep Sea Exploration in the Southern California Borderland". Occidental College. 30 January 2020.
  43. ^ "ROV Luʻukai". luukai.php.
  44. ^ "Remotely Operated Vehicle".
  45. ^ "ROV Hercules". 9 May 2014.
  46. ^ "Ægir6000 (ROV)". University of Bergen.
  47. ^ "Cruise schedule Statistics - GEOMAR - Helmholtz-Zentrum für Ozeanforschung Kiel".
  48. ^ US Department of Commerce, National Oceanic and Atmospheric Administration. "Remotely Operated Vehicle Deep Discoverer: Technology: Submersibles: Vessels: NOAA Office of Ocean Exploration and Research".
  49. ^ "Deep Discoverer and Seirios – Global Foundation for Ocean Exploration".
  50. ^ Kyo, M.; Hiyazaki, E.; Tsukioka, S.; Ochi, H.; Amitani, Y.; Tsuchiya, T.; Aoki, T.; Takagawa, S. (1995). "The sea trial of "KAIKO", the full ocean depth research ROV". 'Challenges of Our Changing Global Environment'. Conference Proceedings. OCEANS '95 MTS/IEEE. 3: 1991–1996. doi:10.1109/OCEANS.1995.528882. ISBN 0-933957-14-9. S2CID 110932870.
  51. ^ Ishibashi, Shojiro; Yoshida, Hiroshi; Osawa, Hiroyuki; Inoue, Tomoya; Tahara, Junichiro; Ito, Kazuaki; Watanabe, Yohitaka; Sawa, Takao; Hyakudome, Tadahiro; Aoki, Taro (April 2008). "A ROV "ABISMO" for the Inspection and Sampling in the Deepest Ocean and Its Operation Support System". OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean: 1–6. doi:10.1109/OCEANSKOBE.2008.4530967. ISBN 978-1-4244-2125-1. S2CID 21881841.
  52. ^ "CSSF-ROPOS - About Us".
  53. ^ "REV Ocean´s ROV "Aurora" enables scientist to collect data and samples 4km under drifting Arctic Ice". www.revocean.or. 25 October 2021.
  54. ^ "ROV MARUM-QUEST". 2022-07-29.
  55. ^ "ROV MARUM-SQUID". 2022-07-29.
  56. ^ Landis, Nomee. ""Mystery Mardi Gras Shipwreck" Documentary". Nautilus Productions. Retrieved 4 June 2016.
  57. ^ "The Dark Secrets of the Lusitania". Irish Film News. Retrieved 4 June 2016.
  58. ^ "NURC - National Underwater Robotics Challenge". NASA Space Grant Robotics at ASU. Retrieved 4 June 2016.
  59. ^ ""Bart" - Argonaut Jr's Underwater ROV". submarineboat. Retrieved 4 June 2016.
  60. ^ "ROV Categories - Summary". Remotely Operated Vehicle Committee. Retrieved 4 June 2016.

External links

Wikimedia Commons has media related to Remotely operated underwater vehicles.
  • What are Underwater ROVs and What are they used for?
  • Remotely Operated Vehicles (ROV), Ocean Explorer, NOAA
  • What are Remotely Operated Vehicles (ROVs)?
  • ROVs at the Smithsonian Ocean Portal
  • Mystery Mardi Gras Shipwreck on YouTube
  • v
  • t
  • e
Mobile robots and uncrewed vehicles
  • Humanoid
  • Android
  • Hexapod
  • Unmanned ground vehicle (UGV)
  • Automated guided vehicle (AGV)
  • Self-driving car
  • Automatic train operation (ATO)
  • Unmanned underwater vehicle (UUV)
  • Autonomous underwater vehicle (AUV)
  • Intervention AUV (I-AUV)
  • Remotely operated underwater vehicle (ROUV)
  • Underwater glider
  • Unmanned surface vehicle (USV)
  • Domestic
  • Military
  • Rescue
  • Medical
  • Disability
  • Agricultural
  • BEAM robotics
  • Microbotics
  • Nanorobotics
  • Robotics
  • Robot locomotion
  • Autonomous robot
  • Autonomous logistics
  • Radio-controlled model
  • Remote control vehicle
  • Remote control animal
  • Categories
  • Radio control
  • Unmanned vehicles
  • v
  • t
  • e
Main articles
Shadow Hand Bulb large.jpg
  • Aerobot
  • Anthropomorphic
    • Humanoid
    • Android
    • Cyborg
  • Claytronics
  • Companion
  • Animatronic
    • Audio-Animatronics
  • Industrial
  • Articulated
    • arm
  • Domestic
  • Educational
  • Entertainment
  • Juggling
  • Military
  • Medical
  • Service
  • Disability
  • Agricultural
  • Food service
  • Retail
  • BEAM robotics
  • Soft robotics
  • Biorobotics
  • Unmanned vehicle
    • aerial
    • ground
  • Mobile robot
  • Microbotics
  • Nanorobotics
  • Necrobotics
  • Robotic spacecraft
    • Space probe
  • Swarm
  • Telerobotics
  • Underwater
    • remotely-operated
  • Tracks
  • Walking
    • Hexapod
  • Climbing
  • Electric unicycle
  • Robot navigation
  • Evolutionary
  • Kits
  • Simulator
  • Suite
  • Open-source
  • Software
  • Adaptable
  • Developmental
  • Paradigms
  • Ubiquitous
  • Critique of work
  • Powered exoskeleton
  • Technological unemployment
  • Terrainability
  • Fictional robots
  • Category
  • Outline
  • v
  • t
  • e
Underwater diving
  • Diving activities
  • Diving modes
    • Atmospheric pressure diving
    • Freediving
    • Saturation diving
    • Scuba diving
    • Snorkeling
    • Surface oriented diving
    • Surface-supplied diving
    • Unmanned diving
Diving equipment
Basic equipment
  • Diving mask
  • Snorkel
  • Swimfin
Breathing gas
  • Bailout gas
  • Bottom gas
  • Breathing air
  • Decompression gas
  • Emergency gas supply
  • Heliox
  • Nitrox
  • Oxygen
  • Travel gas
  • Trimix
Buoyancy and
trim equipment
  • Decompression buoy
  • Decompression chamber
  • Decompression cylinder
  • Decompression trapeze
  • Dive computer
  • Diving bell
  • Diving shot
  • Diving stage
  • Jersey upline
  • Jonline
Diving suit
  • Atmospheric diving suit
    • JIM suit
    • Newtsuit
  • Dry suit
    • Sladen suit
    • Standard diving suit
  • Rash vest
  • Wetsuit
    • Dive skins
    • Hot-water suit
and masks
  • Anti-fog
  • Diving helmet
    • Free-flow helmet
    • Lightweight demand helmet
    • Orinasal mask
    • Reclaim helmet
    • Shallow water helmet
    • Standard diving helmet
  • Diving mask
    • Band mask
    • Full-face mask
    • Half mask
  • Bottom timer
  • Depth gauge
  • Dive computer
  • Dive timer
  • Diving watch
    • Helium release valve
  • Electro-galvanic oxygen sensor
  • Pneumofathometer
  • Submersible pressure gauge
  • Diver propulsion vehicle
  • Diving bell
    • Closed bell
    • Wet bell
  • Diving stage
  • Swimfin
    • Monofin
    • PowerSwim
  • Towboard
  • Wet sub
  • Alternative air source
    • Octopus regulator
    • Pony bottle
  • Bolt snap
  • Buddy line
  • Dive light
  • Diver's cutting tool
    • Diver's knife
  • Diver's telephone
  • Through-water communications
    • Underwater acoustic communication
  • Diving bell
  • Diving safety harness
  • Emergency gas supply
    • Bailout block
    • Bailout bottle
  • Lifeline
    • Screw gate carabiner
  • Emergency locator beacon
  • Rescue tether
  • Safety helmet
  • Shark-proof cage
  • Snoopy loop
  • Navigation equipment
    • Distance line
    • Diving compass
    • Dive reel
    • Line marker
    • Surface marker buoy
    • Silt screw
  • Scuba set
    • Bailout bottle
    • Decompression cylinder
    • Independent doubles
    • Manifolded twin set
      • Scuba manifold
    • Pony bottle
    • Scuba configuration
    • Sidemount
    • Sling cylinder
Diving rebreathers
  • Carbon dioxide scrubber
  • Carleton CDBA
  • Cryogenic rebreather
  • CUMA
  • DSEA
  • Dolphin
  • Halcyon PVR-BASC
  • Halcyon RB80
  • IDA71
  • Interspiro DCSC
  • LAR-5
  • LAR-6
  • LAR-V
  • LARU
  • Mark IV Amphibian
  • Porpoise
  • Ray
  • Siebe Gorman CDBA
  • Salvus
  • Siva
diving equipment
  • Air line
  • Diver's umbilical
  • Diving air compressor
  • Gas panel
  • Hookah
  • Scuba replacement
  • Sea Trek
  • Snuba
  • Standard diving dress
  • AP Diving
  • Apeks
  • Aqua Lung America
  • Aqua Lung/La Spirotechnique
  • Beuchat
  • René Cavalero
  • Cis-Lunar
  • Cressi-Sub
  • Dacor
  • Dive Xtras
  • Divex
  • Diving Unlimited International
  • Drägerwerk
  • Fenzy
  • Maurice Fernez
  • Technisub
  • Oscar Gugen
  • Heinke
  • HeinrichsWeikamp
  • Johnson Outdoors
  • Mares
  • Morse Diving
  • Nemrod
  • Oceanic Worldwide
  • Porpoise
  • Sub Sea Systems
  • Shearwater Research
  • Siebe Gorman
  • Submarine Products
  • Suunto
Diving support equipment
Access equipment
  • Boarding stirrup
  • Diver lift
  • Diving bell
  • Diving ladder
  • Diving platform (scuba)
  • Diving stage
  • Downline
  • Jackstay
  • Launch and recovery system
  • Messenger line
  • Moon pool
Breathing gas
  • Air-lock
  • Built-in breathing system
  • Decompression tables
  • Diving bell
    • Bell cursor
    • Closed bell
    • Clump weight
    • Launch and recovery system
    • Wet bell
  • Diving chamber
  • Diving stage
  • Recreational Dive Planner
  • Saturation system
Remotely operated
underwater vehicles
  • 8A4-class ROUV
  • Atlantis ROV Team
  • CURV
  • Deep Drone
  • Épaulard
  • Global Explorer ROV
  • Goldfish-class ROUV
  • Kaikō ROV
  • Kaşif ROUV
  • Long-Term Mine Reconnaissance System
  • Mini Rover ROV
  • OpenROV
  • ROV KIEL 6000
  • Scorpio ROV
  • Sea Dragon-class ROV
  • Seabed tractor
  • Seafox drone
  • Seahorse ROUV
  • SeaPerch
  • SJT-class ROUV
  • T1200 Trenching Unit
  • VideoRay UROVs
Safety equipment
  • Diver down flag
  • Diving shot
  • ENOS Rescue-System
  • Hyperbaric lifeboat
  • Hyperbaric stretcher
  • Jackstay
  • Jonline
  • Reserve gas supply
  • Aquathlon
  • Apnoea finswimming
  • Freediving
  • Haenyeo
  • Pearl hunting
    • Ama
  • Snorkeling
  • Spearfishing
  • Underwater football
  • Underwater hockey
  • Underwater ice hockey
  • Underwater rugby
  • Underwater target shooting
  • Diving mask
  • Diving suit
  • Hawaiian sling
  • Polespear
  • Snorkel (swimming)
  • Speargun
  • Swimfins
    • Monofin
  • Water polo cap
  • Deborah Andollo
  • Simone Arrigoni
  • Peppo Biscarini
  • Michael Board
  • Sara Campbell
  • Derya Can Göçen
  • Goran Čolak
  • Carlos Coste
  • Robert Croft
  • Mandy-Rae Cruickshank
  • Yasemin Dalkılıç
  • Leonardo D'Imporzano
  • Flavia Eberhard
  • Şahika Ercümen
  • Emma Farrell
  • Francisco Ferreras
  • Pierre Frolla
  • Flavia Eberhard
  • Mehgan Heaney-Grier
  • Elisabeth Kristoffersen
  • Andriy Yevhenovych Khvetkevych
  • Loïc Leferme
  • Enzo Maiorca
  • Jacques Mayol
  • Audrey Mestre
  • Karol Meyer
  • Kate Middleton
  • Stéphane Mifsud
  • Alexey Molchanov
  • Natalia Molchanova
  • Dave Mullins
  • Patrick Musimu
  • Guillaume Néry
  • Herbert Nitsch
  • Umberto Pelizzari
  • Liv Philip
  • Annelie Pompe
  • Michal Risian
  • Stig Severinsen
  • Tom Sietas
  • Aharon Solomons
  • Martin Štěpánek
  • Walter Steyn
  • Tanya Streeter
  • William Trubridge
  • Devrim Cenk Ulusoy
  • Fatma Uruk
  • Danai Varveri
  • Alessia Zecchini
  • Nataliia Zharkova
  • Barotrauma
  • Drowning
  • Freediving blackout
    • Deep-water blackout
    • Shallow-water blackout
  • Hypercapnia
  • Hypothermia
Professional diving
  • Ama
  • Commercial diver
    • Commercial offshore diver
    • Hazmat diver
  • Divemaster
  • Diving instructor
  • Diving safety officer
  • Diving superintendent
  • Diving supervisor
  • Haenyeo
  • Media diver
  • Police diver
  • Public safety diver
  • Scientific diver
  • Underwater archaeologist
  • Commercial offshore diving
  • Dive leader
  • Diver training
    • Recreational diver training
  • Hazmat diving
  • Hyperbaric welding
  • Media diving
  • Nondestructive testing
  • Pearl hunting
  • Police diving
  • Potable water diving
  • Public safety diving
  • Scientific diving
  • Ships husbandry
  • Sponge diving
  • Submarine pipeline
  • Underwater archaeology
    • Archaeology of shipwrecks
  • Underwater construction
    • Offshore construction
  • Underwater demolition
  • Underwater logging
  • Underwater photography
  • Underwater search and recovery
    • Underwater searches
  • Underwater videography
  • Underwater survey
Salvage diving
  • SS Egypt
  • Kronan
  • La Belle
  • SS Laurentic
  • RMS Lusitania
  • Mars
  • Mary Rose
  • USS Monitor
  • HMS Royal George
  • Vasa
Tools and
  • Abrasive waterjet
  • Airlift
  • Baited remote underwater video
  • In-water surface cleaning
    • Brush cart
    • Cavitation cleaning
    • Pressure washing
    • Pigging
  • Lifting bag
  • Remotely operated underwater vehicle
  • Thermal lance
  • Tremie
  • Water jetting
  • Limpet mine
  • Speargun
    • Hawaiian sling
    • Polespear
  • Gyrojet
  • Mk 1 Underwater Defense Gun
  • Powerhead
  • Underwater pistols
    • Heckler & Koch P11
    • SPP-1 underwater pistol
  • Underwater revolvers
    • AAI underwater revolver
  • Underwater rifles
    • ADS amphibious rifle
    • APS underwater rifle
    • ASM-DT amphibious rifle
Recreational diving
  • Altitude diving
  • Cave diving
  • Deep diving
  • Ice diving
  • Muck diving
  • Open-water diving
  • Rebreather diving
  • Sidemount diving
  • Solo diving
  • Technical diving
  • Underwater photography
  • Wreck diving
Diving tourism
Diving events
and festivals
  • Diversnight
  • Underwater Bike Race
Diving safety
  • Barotrauma
  • Decompression sickness
  • Drowning
  • Hypothermia
  • Hypoxia
  • Hypercapnia
  • Hyperthermia
  • Non-freezing cold injury
  • Ascending and descending
    • Emergency ascent
  • Boat diving
  • Buddy diving
    • buddy check
  • Decompression
    • Decompression practice
    • Pyle stop
    • Ratio decompression
  • Dive briefing
  • Dive log
  • Dive planning
    • Rule of thirds
    • Scuba gas planning
  • Diver communications
    • Diving hand signals
    • Diving line signals
    • Diver voice communications
  • Diver rescue
  • Diver training
  • Doing It Right
  • Drift diving
  • Gas blending for scuba diving
  • Night diving
  • Rebreather diving
  • Scuba gas management
  • Solo diving
  • Checklist
  • Hazard identification and risk assessment
    • Hazard analysis
    • Job safety analysis
    • Risk assessment
  • Risk control
  • Incident pit
  • Lockout–tagout
  • Permit To Work
  • Redundancy
  • Safety data sheet
  • Situation awareness
Diving team
  • Bellman
  • Chamber operator
  • Diver medical technician
  • Diver's attendant
  • Diving supervisor
  • Diving systems technician
  • Gas man
  • Life support technician
  • Stand-by diver
safety and
  • Approaches to safety
    • Job safety analysis
    • Risk assessment
    • Toolbox talk
    • Housekeeping
  • Association of Diving Contractors International
  • Code of practice
  • Contingency plan
  • Diving regulations
  • Emergency procedure
  • Emergency response plan
  • Evacuation plan
  • Hazardous Materials Identification System
  • Hierarchy of hazard controls
    • Administrative controls
    • Engineering controls
    • Hazard elimination
    • Hazard substitution
    • Personal protective equipment
  • International Marine Contractors Association
  • Occupational hazard
    • Biological hazard
    • Chemical hazard
    • Physical hazard
    • Psychosocial hazard
  • Occupational hygiene
    • Exposure assessment
    • Occupational exposure limit
    • Workplace health surveillance
  • Safety culture
    • Code of practice
    • Diving safety officer
    • Diving superintendent
    • Health and safety representative
    • Operations manual
    • Safety meeting
  • Standard operating procedure
Diving medicine
  • Alternobaric vertigo
  • Barostriction
  • Barotrauma
    • Air embolism
    • Aerosinusitis
    • Barodontalgia
    • Dental barotrauma
    • Middle ear barotrauma
    • Pulmonary barotrauma
  • Compression arthralgia
  • Decompression illness
  • Dysbarism
  • Freediving blackout
  • Hyperoxia
  • Hypoxia
  • Oxygen toxicity
Inert gases
  • Avascular necrosis
  • Decompression sickness
  • High-pressure nervous syndrome
  • Hydrogen narcosis
  • Nitrogen narcosis
Carbon dioxide
  • Hypercapnia
  • Hypocapnia
Breathing gas
  • Carbon monoxide poisoning
  • Asphyxia
  • Drowning
  • Hypothermia
  • Immersion diuresis
  • Instinctive drowning response
  • Laryngospasm
  • Salt water aspiration syndrome
  • Swimming-induced pulmonary edema
  • Demand valve oxygen therapy
  • First aid
  • Hyperbaric medicine
  • Hyperbaric treatment schedules
  • In-water recompression
  • Oxygen therapy
  • Therapeutic recompression
  • Diving Medical Examiner
  • Diving Medical Practitioner
  • Diving Medical Technician
  • Hyperbaric nursing
Researchers in
diving physiology
and medicine
  • Arthur J. Bachrach
  • Albert R. Behnke
  • Paul Bert
  • George F. Bond
  • Robert Boyle
  • Albert A. Bühlmann
  • John R. Clarke
  • Guybon Chesney Castell Damant
  • Kenneth William Donald
  • William Paul Fife
  • John Scott Haldane
  • Robert William Hamilton Jr.
  • Henry Valence Hempleman
  • Leonard Erskine Hill
  • Brian Andrew Hills
  • Felix Hoppe-Seyler
  • Christian J. Lambertsen
  • Simon Mitchell
  • Charles Momsen
  • Neal W. Pollock
  • John Rawlins
  • Charles Wesley Shilling
  • Edward D. Thalmann
  • Jacques Triger
Diving medical
Underwater art
and artists
  • The Diver
  • Jason deCaires Taylor
and inventors
  • William Beebe
  • Georges Beuchat
  • John R. Clarke
  • Jacques Cousteau
  • Charles Anthony Deane
  • John Deane
  • Louis de Corlieu
  • Auguste Denayrouze
  • Ted Eldred
  • Henry Fleuss
  • Émile Gagnan
  • Joseph-Martin Cabirol
  • Christian J. Lambertsen
  • Yves Le Prieur
  • John Lethbridge
  • Ernest William Moir
  • Joseph Salim Peress
  • Auguste Piccard
  • Joe Savoie
  • Willard Franklyn Searle
  • Gordon Smith
  • Augustus Siebe
  • Jacques Triger
  • Aqua-Lung
  • RV Calypso
  • SP-350 Denise
  • Magnesium torch
  • Nikonos
  • Porpoise regulator
  • Standard diving dress
  • Sub Marine Explorer
  • Vintage scuba
Military and
covert operations
  • Raid on Alexandria (1941)
  • Sinking of the Rainbow Warrior
Scientific projects
  • 1992 cageless shark-diving expedition
  • Mission 31
Awards and events
Dive boat incidents
  • Sinking of MV Conception
Diver rescues
Early diving
  • John Day (carpenter)
  • Charles Spalding
  • Ebenezer Watson
Freediving fatalities
diving incidents
  • Byford Dolphin diving bell accident
  • Drill Master diving accident
  • Star Canopus diving accident
  • Stena Seaspread diving accident
  • Venture One diving accident
  • Waage Drill II diving accident
  • Wildrake diving accident
diving fatalities
Scuba diving
  • NOAA Diving Manual
  • U.S. Navy Diving Manual
  • Basic Cave Diving: A Blueprint for Survival
  • Underwater Handbook
  • Bennett and Elliott's physiology and medicine of diving
  • Encyclopedia of Recreational Diving
  • The new science of skin and scuba diving
  • Professional Diver's Handbook
  • Basic Scuba
Standards and
Codes of Practice
  • Code of Practice for Scientific Diving (UNESCO)
  • DIN 7876
  • IMCA Code of Practice for Offshore Diving
  • ISO 24801 Recreational diving services — Requirements for the training of recreational scuba divers
General non-fiction
  • The Darkness Beckons
  • Goldfinder
  • The Last Dive
  • Shadow Divers
  • The Silent World: A Story of Undersea Discovery and Adventure
Dive guides
Training and registration
  • Competence and assessment
    • Competency-based learning
    • Refresher training
    • Skill assessment
  • Diver training standard
  • Diving instructor
  • Diving school
  • Occupational diver training
  • Recreational diver training
    • Introductory diving
  • Teaching method
    • Muscle memory
    • Overlearning
    • Stress exposure training
  • Combat sidestroke
  • Diver navigation
  • Diver trim
  • Ear clearing
    • Frenzel maneuver
    • Valsalva maneuver
  • Finning techniques
  • Scuba skills
    • Buddy breathing
    • Low impact diving
      • Diamond Reef System
  • Surface-supplied diving skills
  • Underwater searches
Core diving skills
  • Advanced Open Water Diver
  • Autonomous diver
  • CMAS* scuba diver
  • CMAS** scuba diver
  • Introductory diving
  • Low Impact Diver
  • Master Scuba Diver
  • Open Water Diver
  • Supervised diver
Leadership skills
  • Dive leader
    • Divemaster
  • Diving instructor
    • Master Instructor
Specialist skills
  • Rescue Diver
  • Solo diver
Diver training
and registration
Commercial diver
Commercial diving
Scientific diver
Technical diver
Military diver
training centres
Military diver
training courses
Underwater sports
Surface snorkeling
  • Finswimming
  • Aquathlon
  • Apnoea finswimming
  • Freediving
  • Underwater ice hockey
Open Circuit Scuba
  • Immersion finswimming
  • Sport diving
  • Underwater cycling
  • Underwater orienteering
  • Underwater photography
  • Underwater photography
Sports governing
and federations
of diving
archaeologists and
  • Michael Arbuthnot
  • Robert Ballard
  • George Bass
  • Mensun Bound
  • Louis Boutan
  • Hugh Bradner
  • Cathy Church
  • Eugenie Clark
  • James P. Delgado
  • Sylvia Earle
  • John Christopher Fine
  • George R. Fischer
  • Anders Franzén
  • Honor Frost
  • Fernando Garfella Palmer
  • David Gibbins
  • Graham Jessop
  • Swietenia Puspa Lestari
  • Pilar Luna
  • Robert F. Marx
  • Anna Marguerite McCann
  • Innes McCartney
  • Charles T. Meide
  • David Moore
  • Mark M. Newell
  • Lyuba Ognenova-Marinova
  • John Peter Oleson
  • Mendel L. Peterson
  • Richard Pyle
  • Andreas Rechnitzer
  • William R. Royal
  • Margaret Rule
  • Gunter Schöbel
  • Stephanie Schwabe
  • Myriam Seco
  • E. Lee Spence
  • Robert Sténuit
  • Peter Throckmorton
  • Cristina Zenato
Scuba record
  • Pascal Bernabé
  • Jim Bowden
  • Mark Ellyatt
  • Sheck Exley
  • Nuno Gomes
  • Claudia Serpieri
  • Krzysztof Starnawski
and presenters
  • Samir Alhafith
  • David Attenborough
  • Ramón Bravo
  • Jean-Michel Cousteau
  • Richie Kohler
  • Paul Rose
  • Andy Torbet
  • Ivan Tors
  • Andrew Wight
  • Doug Allan
  • Tamara Benitez
  • Georges Beuchat
  • Adrian Biddle
  • Jonathan Bird
  • Eric Cheng
  • Neville Coleman
  • Jacques Cousteau
  • John D. Craig
  • Ben Cropp
  • Bernard Delemotte
  • David Doubilet
  • Candice Farmer
  • John Christopher Fine
  • Dermot FitzGerald
  • Rodney Fox
  • Ric Frazier
  • Stephen Frink
  • Peter Gimbel
  • Monty Halls
  • Hans Hass
  • Henry Way Kendall
  • Rudie Kuiter
  • Joseph B. MacInnis
  • Luis Marden
  • Agnes Milowka
  • Noel Monkman
  • Pete Oxford
  • Steve Parish
  • Zale Parry
  • Pierre Petit
  • Leni Riefenstahl
  • Peter Scoones
  • Brian Skerry
  • Wesley C. Skiles
  • E. Lee Spence
  • Philippe Tailliez
  • Ron Taylor
  • Valerie Taylor
  • Albert Tillman
  • John Veltri
  • Stan Waterman
  • Michele Westmorland
  • John Ernest Williamson
  • J. Lamar Worzel
  • Caves
    • Graham Balcombe
    • Sheck Exley
    • Martyn Farr
    • Jochen Hasenmayer
    • Jill Heinerth
    • Jarrod Jablonski
    • William Hogarth Main
    • Tom Mount
    • Jack Sheppard
    • Bill Stone
  • Reefs
    • Arthur C. Clarke
  • Wrecks
    • Leigh Bishop
    • John Chatterton
    • Clive Cussler
    • Bill Nagle
    • Valerie van Heest
    • Aristotelis Zervoudis
  • Andrew Abercromby
  • Joseph M. Acaba
  • Clayton Anderson
  • Richard R. Arnold
  • Serena Auñón-Chancellor
  • Michael Barratt (astronaut)
  • Robert A. Barth
  • Robert L. Behnken
  • Randolph Bresnik
  • Timothy J. Broderick
  • Justin Brown
  • Berry L. Cannon
  • Scott Carpenter
  • Gregory Chamitoff
  • Steve Chappell
  • Catherine Coleman
  • Robin Cook
  • Craig B. Cooper
  • Fabien Cousteau
  • Philippe Cousteau
  • Timothy Creamer
  • Jonathan Dory
  • Pedro Duque
  • Sylvia Earle
  • Jeanette Epps
  • Sheck Exley
  • Albert Falco
  • Andrew J. Feustel
  • Michael Fincke
  • Satoshi Furukawa
  • Ronald J. Garan Jr.
  • Michael L. Gernhardt
  • Christopher E. Gerty
  • David Gruber
  • Chris Hadfield
  • Jeremy Hansen
  • José M. Hernández
  • John Herrington
  • Paul Hill
  • Akihiko Hoshide
  • Mark Hulsbeck
  • Emma Hwang
  • Norishige Kanai
  • Les Kaufman
  • Scott Kelly
  • Karen Kohanowich
  • Timothy Kopra
  • Dominic Landucci
  • Jon Lindbergh
  • Kjell N. Lindgren
  • Michael López-Alegría
  • Joseph B. MacInnis
  • Sandra Magnus
  • Thomas Marshburn
  • Matthias Maurer
  • K. Megan McArthur
  • Craig McKinley
  • Jessica Meir
  • Simone Melchior
  • Dorothy Metcalf-Lindenburger
  • Andreas Mogensen
  • Karen Nyberg
  • John D. Olivas
  • Takuya Onishi
  • Luca Parmitano
  • Nicholas Patrick
  • Tim Peake
  • Thomas Pesquet
  • Marc Reagan
  • Garrett Reisman
  • Kathleen Rubins
  • Dick Rutkowski
  • Tara Ruttley
  • David Saint-Jacques
  • Josef Schmid
  • Robert Sheats
  • Dewey Smith
  • Steve Squyres
  • Heidemarie Stefanyshyn-Piper
  • Robert Sténuit
  • Hervé Stevenin
  • Nicole Stott
  • James Talacek
  • Daniel M. Tani
  • Robert Thirsk
  • Bill Todd
  • Mark T. Vande Hei
  • Koichi Wakata
  • Rex J. Walheim
  • Shannon Walker
  • John Morgan Wells
  • Joachim Wendler
  • Douglas H. Wheelock
  • Peggy Whitson
  • Dafydd Williams
  • Jeffrey Williams
  • Sunita Williams
  • Gregory R. Wiseman
  • Kimiya Yui
Writers and journalists
  • Michael C. Barnette
  • Victor Berge
  • Philippe Diolé
  • Gary Gentile
  • Bret Gilliam
  • Bob Halstead
  • Hillary Hauser
  • Trevor Jackson
  • Steve Lewis
  • John Mattera
  • Craig Challen
  • Richard Harris
  • Rick Stanton
  • John Volanthen
  • Lionel Crabb
  • Ian Edward Fraser
  • Sydney Knowles
  • James Joseph Magennis
Commercial salvors
  • Keith Jessop
  • Metre sea water
  • Neutral buoyancy
  • Underwater acoustics
    • Modulated ultrasound
  • Underwater vision
    • Underwater computer vision
  • List of diving environments by type
  • Altitude diving
  • Benign water diving
  • Confined water diving
  • Deep diving
  • Inland diving
  • Inshore diving
  • Muck diving
  • Night diving
  • Open-water diving
    • Black-water diving
    • Blue-water diving
  • Penetration diving
    • Cave diving
      • Torricellian chamber
    • Ice diving
    • Wreck diving
  • Recreational dive sites
  • Underwater environment
  • Algal bloom
  • Currents:
    • Current
    • Longshore drift
    • Ocean current
    • Rip current
    • Tidal race
    • Undertow
    • Upwelling
      • Ekman transport
  • Halocline
  • Reef
    • Coral reef
  • Stratification
  • Thermocline
  • Tides
  • Turbidity
  • Wind wave
    • Breaking wave
    • Surf
    • Surge
    • Swell
    • Wave shoaling
  • Aluminaut
  • DSV Alvin
  • American submarine NR-1
  • Bathyscaphe
    • Archimède
    • FNRS-2
    • FNRS-3
    • Harmony class bathyscaphe
    • Sea Pole-class bathyscaphe
    • Trieste II
  • Deepsea Challenger
  • Ictineu 3
  • JAGO
  • Jiaolong
  • Konsul-class submersible
  • Russian submarine Losharik
  • Mir
  • Nautile
  • Pisces-class deep submergence vehicle
  • DSV Sea Cliff
  • DSV Shinkai
  • DSV Shinkai 2000
  • DSV Shinkai 6500
  • DSV Turtle
  • DSV-5 Nemo
Submarine rescue
rescue vehicle
Submarine escape
Escape set
Neutral buoyancy
facilities for
Astronaut training
Authority control: National libraries Edit this at Wikidata
  • Israel
  • United States